Semantic Indexing and Known Item Search Based on a Unified Model with Topic Transition Representation

نویسندگان

  • Takuho Nakano
  • Shigeki Sagayama
  • Nobutaka Ono
  • Akisato Kimura
  • Hirokazu Kameoka
  • Kunio Kashino
چکیده

We applied a generative approach to the TRECVID 2010 Semantic Indexing (SIN) and Known-Item Search (KIS) tasks, using a probabilistic network called Hierarchical Topic Trajectory Model (HTTM). It is our newly-developed model that can integrate multiple sources of potentially associated information such as video frames and texts, as well as dynamically changing high-level pieces of information such as topics. With this model, the semantic indexing and the knownitem search tasks were dealt within a single unified framework. We show how it worked, and present some analysis for the SIN task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

IRQAS: Information Retrieval and Question Answering System Based on A Unified Logical-Linguistic Model

Many existing search engines do not have an important capability, the capability to deduce an answer to a query based on information which reside in various parts of documents. The levels-of-processing theory proposes that there are many ways to process and code information and thus the knowledge representation used as surrogate to documents are qualitatively different. The capability of deduct...

متن کامل

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010